Как только потомки половых или стволовых клеток начинают дифференцироваться, активность теломеразы падает и их теломеры начинают укорачиваться. В клетках, дифференцировка которых завершена, активность теломеразы падает до нуля, и с каждым клеточным делением они с неизбежностью приближаются к состоянию сенесенса (перестают делиться). Вслед за этим наступает кризис, и большинство клеток погибают (рис. 7). Эта картина характерна для подавляющего большинства известных культур клеток эукариот. Однако и здесь есть редкие, но важные исключения: теломеразная активность обнаруживается в таких "смертных" клетках, как макрофаги и лейкоциты.
В настоящее время теломеразная теория старения клеток считается экспериментально доказанной.
Приведем некоторые доводы в пользу этого утверждения.
1. Фибробласты эмбриона человека, прошедшие в культуре ткани определенное число делений (например, 30) и замороженные на длительное время, после размораживание делятся не более 20 раз и, достигнув лимита Хейфлика, прекращают деление и погибают.
2. Соматические клетки, взятые у животных одного вида, но разного возраста, достигают лимита Хейфлика в разное время. Чем старше животное, тем меньшее количество делений совершают клетки.
3. Теломеры соматических клеток больных синдромами наследственной прогерии (синдром Хатчинсона-Гилфорда и синдром Вернера) при каждом делении укорачиваются на большее число н. п., чем клетки здорового организма.
4. Ген теломеразы, введенный в культуру соматических клеток, увеличивает лимит Хейфлика на 20--30 делений.
5. Теломеры половых клеток при их делении не укорачиваются, но даже могут удлиняться. В половых клетках ген теломеразы активен и в них идет постоянное образование теломеразы.
6. Ген теломеразы активен и в опухолевых клетках. Теломераза является маркером опухолевого процесса.
7. Введение в культуру опухолевых клеток веществ, блокирующих или разрушающих теломеразу, приводит к остановке безудержного размножения этих клеток.
С другой стороны, есть экспериментальные данные, которые в определенной степени противоречат теломеразной теории старения клеток, а именно:
1. В организме человека и животных имеются неделящиеся клетки, срок жизни которых сравним со сроком жизни макроорганизма (например, нейроны головного мозга). Их гибель не обусловлена достижением «лимита Хейфлика».
2. Заражение клеток вирусом SV40 приводит к тому, что они способны совершать по 20--40 делений сверх «лимита Хейфлика». Однако в этих клетках отсутствует теломераза и в них продолжается укорочение теломер.
3. В некоторых случаях введение в клетку активного гена теломеразы (например, в клетки молочной железы) приводит к удлинению теломер, но не сопровождается увеличением лимита Хейфлика.
4. Помимо укорочения теломер в соматических клетках наблюдается и много других изменений ДНК. Например, увеличение числа разрывов в цепях ДНК, усиление прочности связывания белков с ДНК, снижение активности ферментов репарации ДНК и др. В результате этих процессов, несмотря на то, что теломеры еще не достигли критического укорочения, в клетке включаются механизмы блокады митотического цикла, она перестает делиться и погибает.
Функция старения клеток и организма в целом является, несомненно, очень важным фактором прогрессивного развития всех живых организмов на земле. Сама функция старения обеспечивается многими системами и механизмами. Такой параллелизм повышает вероятность выполнения этой функции. Неслучайно, что получить линию бессмертных клеток можно, только преодолев противодействие как минимум трёх генетических механизмов, о которых было написано в этом реферате. В организме таких барьеров, конечно же, больше. Однако, как сказал академик Скулачёв, "сам факт, что их число должно быть конечным, может вселить оптимизм в души борцов за человеческое бессмертие"."