ЗАМЕТКИ ПРО АТОМ
Человек изучает мир вокруг него, мир неизвестный и непонятный. Но человек не одинок в этом процессе изучения. Познанием окружающего мира занимается практически все и всё. Нет инструкции для этого мира и каждый познающий из познанного делает свои выводы.
Почему так. Потому, что так всё устроено.
Алгоритмы начала мироздания скрыты в глубине вещества и не поддаются исчислению на этом уровне развития понимания, который есть у этого локализованного сообщества. В сообщество надо включить всех и всё, естественно.
Познание сопряжено с возникновением той или иной новой информации, сообщество называет это “открытием” и всячески поощряем этих первооткрывателей, как будто они это создали. Бессмысленное, но интересное занятие и на заслуги явно не тянет.

Предположим, что известный процесс распад атома (обычно говоря: радиоактивного распада ядра) происходит не как иначе как с утратой части энергии и информации, а также изменением алгоритма (или его части) данного простого вещества, зафиксированного в ядре (возможно и иное: в теле атома).
Логично предположить, что в этом случае:
  • могут образовываться новые вещества как из выделенной, неовеществленной части распада, так и оставшейся, основной части распада;
  • обе части могут трансформироваться в иные известные нам ранее и существующие нашем в Мироздании вещества без формирования новых алгоритмов вещества;
  • выделенная часть распада заведомо образует вещество и имеет алгоритм вещества;
  • процесс распада может формировать новый алгоритм вещества у атома с выделением неовеществленной энергии и информации в выделенной части распада;
  • процесс распада может формировать новый алгоритм вещества у выделенной неовеществленной части распада.
  • иное (пока не придумал).
На вопрос почему технологии связанные с применением радиоактивных элементов были преданы забвению с биркой опасно для жизни, есть простой ответ: извлечение ядерной энергии могло стать общедоступным.
Не стало.
Радиоакти́вный распа́д (от лат. radius «луч» и āctīvus «действенный», через фр. radioactif, букв. «радиоактивность») — спонтанное изменение состава (заряда Z, массового числа A) или внутреннего строения нестабильных атомных ядер путём испускания элементарных частиц, гамма-квантов и/или ядерных фрагментов. Процесс радиоактивного распада также называют радиоакти́вностью, а соответствующие нуклиды — радиоактивными (радионуклидами). Радиоактивными называют также вещества, содержащие радиоактивные ядра.

Ядерные фрагменты
Кла́стерная радиоакти́вность, кластерный распад — явление самопроизвольного испускания ядрами ядерных фрагментов (кластеров) тяжелее, чем α-частица.

В настоящее время экспериментально обнаружено 25 ядер от 114Ba до 241Аm (почти все они — тяжёлые), испускающих из основных состояний кластеры типа 14С, 20О, 24Ne, 26Ne, 28Mg, 30Mg, 32Si и 34Si. Энергии относительного движения вылетающего кластера и дочернего ядра Q меняются от 28 до 94 МэВ и во всех случаях оказываются заметно меньшими высоты потенциального барьера VB. Таким образом, кластерный распад, как и альфа-распад, обусловлен туннельным эффектом — запрещённым в классической физике прохождением частицы сквозь потенциальный барьер.

Кластерный распад можно рассматривать как процесс, в некотором смысле промежуточный между альфа-распадом и спонтанным делением ядра.

Кластерная радиоактивность была открыта в 1984 году исследователями Оксфордского университета, которые зарегистрировали испускание ядра углерода 14C ядром радия 223Ra, происходившее в среднем один раз на миллиард (109) альфа-распадов.
Радо́н-222 (222Rn), исторические названия нито́н (лат. Niton, обозначался символом Nt, от лат. niteo — блещу, из-за свечения в темноте) и позднее просто радон (лат. Radon, обозначался символом Rn), также известный как эманация радия (лат. Radii Emanatio, обозначался символом RaEm) — радиоактивный нуклид химического элемента радона с атомным номером 86 и массовым числом 222. Имеет период полураспада 3,8235(3) сут. Открыт в 1900 году Ф. Э. Дорном и А. Дебьерном.

Радон-222 — член радиоактивного семейства урана-238 (так называемый ряд урана-радия), поэтому радон-222 образуется в природе в урановых месторождениях.

Радон-222 непосредственно образуется в результате α-распада нуклида 226Ra (период полураспада составляет 1600 лет).

Сам радон-222 также α-радиоактивен, в результате распада образуется нуклид 218Po, выделяемая энергия составляет 5,5903 МэВ.

В России, в воде, в первую очередь в воде подземных водоисточников, уровень вмешательства по радону-222 составляет 60 Бк/кг.

А́льфа-распа́д (α-распад) — вид радиоактивного распада ядра, в результате которого происходит испускание дважды магического ядра гелия 4He — альфа-частицы. При этом массовое число ядра уменьшается на 4, а атомный номер — на 2.
Альфа-распад из основного состояния наблюдается только у достаточно тяжёлых ядер, например, у радия-226 или урана-238. Альфа-радиоактивные ядра в таблице нуклидов появляются начиная с атомного номера 52 (теллур) и массового числа около 106—110, а при атомном номере больше 82 и массовом числе больше 200 практически все нуклиды альфа-радиоактивны, хотя альфа-распад у них может быть и не доминирующей модой распада. Среди природных изотопов альфа-радиоактивность наблюдается у нескольких нуклидов редкоземельных элементов (неодим-144, самарий-147, самарий-148, европий-151, гадолиний-152), а также у нескольких нуклидов тяжёлых металлов (гафний-174, вольфрам-180, осмий-186, платина-190, висмут-209, торий-232, уран-235, уран-238) и у короткоживущих продуктов распада урана и тория.

Альфа-распад из высоковозбуждённых состояний ядра наблюдается и у ряда лёгких нуклидов, например у лития-7. Среди лёгких нуклидов альфа-распад из основного состояния испытывают гелий-5 (распадается в α + n), литий-5 (α + p), бериллий-6 (α + 2p), бериллий-8 (2α) и бор-9 (2α + p).

Альфа-частица испытывает туннельный переход через потенциальный барьер, обусловленный ядерными силами, поэтому альфа-распад является существенно квантовым процессом. Поскольку вероятность туннельного эффекта зависит от высоты барьера экспоненциально, период полураспада альфа-активных ядер экспоненциально растёт с уменьшением энергии альфа-частицы (этот факт составляет содержание закона Гейгера — Нэттола). При энергии альфа-частицы меньше 2 МэВ время жизни альфа-активных ядер существенно превышает время существования Вселенной. Поэтому, хотя большинство природных изотопов тяжелее церия в принципе способны распадаться по этому каналу, лишь для немногих из них такой распад действительно зафиксирован.

Скорость вылета альфа-частицы составляет от 9400 км/с (изотоп неодима 144Nd) до 23 700 км/с у изотопа полония 212mPo. В общем виде формула альфа-распада выглядит следующим образом:
Альфа-распад может рассматриваться как предельный случай кластерного распада.

Впервые альфа-распад был идентифицирован британским физиком Эрнестом Резерфордом в 1899 году. Одновременно в Париже французский физик Поль Виллар проводил аналогичные эксперименты, но не успел разделить излучения раньше Резерфорда. Первую количественную теорию альфа-распада разработал советский и американский физик Георгий Гамов.

Будучи довольно тяжёлыми и положительно заряженными, альфа-частицы от радиоактивного распада имеют очень короткий пробег в веществе и при движении в среде быстро теряют энергию на небольшом расстоянии от источника. Это приводит к тому, что вся энергия излучения высвобождается в малом объёме вещества, что увеличивает шансы повреждения клеток при попадании источника излучения внутрь организма. Однако внешнее излучение от радиоактивных источников безвредно, поскольку альфа-частицы могут эффективно задерживаться несколькими сантиметрами воздуха или десятками микрометров плотного вещества — например, листом бумаги и даже роговым омертвевшим слоем эпидермиса (поверхностью кожи), не достигая живых клеток. Даже прикосновение к источнику чистого альфа-излучения не опасно, хотя следует помнить, что многие источники альфа-излучения излучают также гораздо более проникающие типы излучения (бета-частицы, гамма-кванты, иногда нейтроны). Однако попадание альфа-источника внутрь организма приводит к значительному облучению. Коэффициент качества альфа-излучения равен 20 (больше всех остальных типов ионизирующего излучения, за исключением тяжёлых ядер и осколков деления). Это означает, что в живой ткани альфа-частица создаёт оценочно в 20 раз большие повреждения, чем гамма-квант или бета-частица равной энергии.

Всё вышеизложенное относится к радиоактивным источникам альфа-частиц, энергии которых не превосходят 15 МэВ. Альфа-частицы, полученные на ускорителе, могут иметь значительно более высокие энергии и создавать значимую дозу даже при внешнем облучении организма.
Самым удивительным свойством радия является его способность выделять, кроме лучей, еще особый газ, особые потоки материальных частиц, так называемую эманацию.

Эманирование, эманирующая способность, выделение в окружающую среду твёрдыми веществами, содержащими радий, радиоактивного газа радона (эманации).
Переход радона из объёма твёрдого вещества в окружающую среду происходит либо за счёт энергии отдачи, приобретаемой ядрами радона после a-распада материнских ядер радия, либо диффузией. При этом часть радона остаётся замурованной в объёме твёрдого вещества и претерпевает радиоактивный распад раньше, чем достигнет его поверхности. Отношение количества радона, выделяющегося в окружающую среду из твёрдого вещества, к полному его количеству, образующемуся за тот же промежуток времени, называется коэффициентом Э. (или коэффициентом эманирующей способности). Коэффициент Э. обычно выражают в процентах.
Э. зависит от состава и строения вещества, его удельной поверхности, температуры и других факторов. При комнатной температуре коэффициент Э. варьирует от менее 100% (например, у пальмитата бария, содержащего микроколичества радия) до 1% и менее (у некоторых неорганических солей, стекол и др.). При увеличении температуры Э., как правило, возрастает.
В геологии Э. иногда также характеризуют количеством радона, выделяемого 1 г. горной породы за определённое время; в этом случае при прочих равных условиях Э. тем выше, чем больше радия в образце. Поэтому, сравнивая Э. исследуемой породы и образца, концентрация радия в котором известна, можно оценить содержание радия в анализируемой горной породе.
На измерении Э. основан эманационный метод исследования твёрдых веществ, а также метод поиска радиоактивных руд и минералов.

Литература

  1. Мухин К. Н. Экспериментальная ядерная физика. В 2 кн. Кн. 1. Физика атомного ядра. Ч. I. Свойства нуклонов, ядер и радиоактивных излучений. — М.: Энергоатомиздат, 1993. — С. 137. — ISBN 5-283-04080-1
  2. Nudat 2. Interactive Chart of Nuclides Архивная копия от 6 апреля 2018 на Wayback Machine. National Nuclear Data Center, Brookhaven National Laboratory.
  3. Rutherford E. Uranium radiation and the electrical conduction produced by it (англ.) // Philosophical Magazine, Series 5. — 1899. — Vol. 47, iss. 284. — P. 109—163. Архивировано 3 июля 2023 года.
  4. Маляров В. В. Основы теории атомного ядра. — М.: Физматлит, 1959. — 472 с. — 18 000 экз.
  5. Яворский Б. М., Детлаф А. А., Лебедев А. К. Справочник по физике. — М.: «ОНИКС», «Мир и Образование», 2006. — 1056 с. — 7000 экз. — ISBN 5-488-00330-4.
  6. Audi G., Wapstra A. H., Thibault C. The AME2003 atomic mass evaluation (II). Tables, graphs, and references (англ.) // Nuclear Physics A. — 2003. — Vol. 729. — P. 337—676. — doi:10.1016/j.nuclphysa.2003.11.003. — Bibcode: 2003NuPhA.729..337A.
  7. Audi G., Bersillon O., Blachot J., Wapstra A. H. The NUBASE evaluation of nuclear and decay properties // Nuclear Physics A. — 2003. — Т. 729. — С. 3—128. — doi:10.1016/j.nuclphysa.2003.11.001. — Bibcode: 2003NuPhA.729....3A.Открытый доступ
  8. Чугаев Л. А. Нитон // Новый энциклопедический словарь: В 48 томах (вышло 29 томов). — СПб., Пг., 1911—1916.
  9. Нитон // Николай — Олонки. — М. : Советская энциклопедия, 1954. — С. 28. — (Большая советская энциклопедия : [в 51 т.] / гл. ред. Б. А. Введенский ; 1949—1958, т. 30).
  10. Эманация // Малая советская энциклопедия, изд. 2-е.
  11. Редкол.:Зефиров Н. С. (гл. ред.). Химическая энциклопедия: в 5 т. — Москва: Советская энциклопедия, 1995. — Т. 4. — С. 174. — 639 с. — 20 000 экз. — ISBN 5—85270—039—8.
  12. Популярная библиотека химических элементов / Отв. ред. И. В. Петрянов-Соколов. — 3 изд. — М.: Наука, 1983. — Т. 2. Серебро — Нильсборий. — С. 299-307. — 572 с. — 50 000 экз. Архивировано 15 октября 2007 года.
  13. http://fundmetrology.ru/10_tipy_si/list.aspx Архивная копия от 25 марта 2013 на Wayback Machine Государственный реестр средств измерений
  14. СанПиН 1.2.3685-21 «Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания» (III. Нормативы качества и безопасности воды: таблица 3.12 и п. 18) Архивная копия от 4 января 2022 на Wayback Machine // Электронный текст документа в СПС «Кодекс».
  15. С. Иесснер "Кожные болезни и косметика", 1913 год
  16. Большая советская энциклопедия. в 30-ти т.. – 3-е изд.. – М. : Совет. энцикл., 1969 - 1986. ил., карт.
  17. Ramsay W. Эманация радия, его свойства и изменения В.О.Ф.Э.М. (№ 377, стр. 106—111)
  18. Самуэль Иесснер “Руководство по кожным и венерическим болезням со включением косметики” т. 1-2
Санкт-Петербург : Практическая медицина (В. С. Эттингер) Ф. В. Эттингер, 1913

Картинка: www.freepik.com
С уважением к Вам
Научный руководитель команды проекта THYMUS
Крылов Руслан

Пишите мне: coor.spb@gmail.com
01 октября / 2024
№ 01.24
г. Санкт-Петербург
Made on
Tilda